Hybrid tetramers of porcine liver fructose-1,6-bisphosphatase reveal multiple pathways of allosteric inhibition.

نویسندگان

  • Scott W Nelson
  • Richard B Honzatko
  • Herbert J Fromm
چکیده

Fructose-1,6-bisphosphatase is a square planar tetramer of identical subunits, which exhibits cooperative allosteric inhibition of catalysis by AMP. Protocols for in vitro subunit exchange provide three of five possible hybrid tetramers of fructose-1,6-bisphosphatase in high purity. The two hybrid types with different subunits in the top and bottom halves of the tetramer co-purify. Hybrid tetramers, formed from subunits unable to bind AMP and subunits with wild-type properties, differ from the wild-type enzyme only in regard to their properties of AMP inhibition. Hybrid tetramers exhibit cooperative, potent, and complete (100%) AMP inhibition if at least one functional AMP binding site exists in the top and bottom halves of the tetramer. Furthermore, titrations of hybrid tetramers with AMP, monitored by a tryptophan reporter group, reveal cooperativity and fluorescence changes consistent with an R- to T-state transition, provided that again at least one functional AMP site exists in the top and bottom halves of the tetramer. In contrast, hybrid tetramers, which have functional AMP binding sites in only one half (top/bottom), exhibit an R- to T-state transition and complete AMP inhibition, but without cooperativity. Evidently, two pathways of allosteric inhibition of fructose-1,6-bisphosphatase are possible, only one of which is cooperative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of cooperativity in the activation of fructose-1,6-bisphosphatase by Mg2+.

Fructose-1,6-bisphosphatase requires a divalent metal cation for catalysis, Mg(2+) being its most studied activator. Phosphatase activity increases sigmoidally with the concentration of Mg(2+), but the mechanistic basis for such cooperativity is unknown. Bound magnesium cations can interact within a single subunit or between different subunits of the enzyme tetramer. Mutations of Asp(118), Asp(...

متن کامل

The allosteric properties of rat liver fructose-1,6-bisphosphatase.

Inhibition of rat liver fructose-1,6-bisphosphatase by AMP was uncompetitive with respect to fructose 1,6-bisphosphate in the absence of fructose 2,6-bisphosphate, but non-competitive in its presence. AMP was unable to bind to the enzyme except in the presence of one of the fructose bisphosphates; the binding stoicheiometry was 2 molecules/tetramer. Increasing concentrations of Mg2+ increased t...

متن کامل

The role of fructose 2,6-bisphosphate in regulation of fructose-1,6-bisphosphatase.

The effect of fructose 1,6-bisphosphate and fructose 2,6-bisphosphate on the inhibition of rat liver fructose1,6-bisphosphatase by AMP was investigated. When the concentration of fructose 1,Bbisphosphate increased from 1 p~ to 50 p ~ , the concentration of AMP that gave 50% inhibition (So.6) decreased from 50 PM to 16 p ~ . Fructose 2,6-bisphosphate was also found to potentiate allosteric inhib...

متن کامل

Mutations in the hinge of a dynamic loop broadly influence functional properties of fructose-1,6-bisphosphatase.

Loop 52-72 of porcine fructose-1,6-bisphosphatase may play a central role in the mechanism of catalysis and allosteric inhibition by AMP. The loop pivots between different conformational states about a hinge located at residues 50 and 51. The insertion of proline separately at positions 50 and 51 reduces k(cat) by up to 3-fold, with no effect on the K(m) for fructose 1,6-bisphosphate. The K(a) ...

متن کامل

Dual role of Zn2+ as inhibitor and activator of fructose 1,6-bisphosphatase of rat liver.

At neutral pH, Zn2+ is a potent and specific inhibitor of rat liver fructose 1,6-bisphosphatase (EC 3.1.3.11; D-fructose-1,6-bisphosphate 1-phosphohydrolase). Inhibition by Zn2+ is uncompetitive with respect to the activating cations Mg2+ and Mn2+, and the kinetic data suggest that the enzyme possesses a distinct high-affinity binding site for Zn2+, with Ki of approximately 0.3 muM. At higher c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 18  شماره 

صفحات  -

تاریخ انتشار 2002